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Abstract 

A method to derive optimally orthogonal curvilinear coordinates for N-body systems 
is proposed. The invariance of certain subspaces under groups of linear transformations 
is employed to partition the configuration subspace into internal and external components. 
The construction is initially carried out locally by orthogonalizing typical group invariant 
vector fields. Integration is performed subsequently by means of integrating factors. 
Simple examples of orthogonal invariams illustrate the discussion. 

1. In t roduct ion  

An essential step in the integration of the multivariable SchrOdinger equation 
describing any system of N interacting particles is the selection of some optimal 
choice of coordinates underlying the physical description. Such coordinates must 

(1) reflect in a transparent way the constraints and the symmetries which characterize 
the system, and 

(2) provide an acceptable degree of separability of the Hamiltonian. 
In any event, the selection of an appropriate set of coordinates is decided 

primarily from the invariance properties of the Hamiltonian under some group F of 
linear transformations. For example, relative coordinates are invariant under the 
group of translations in physical space IR 3, internal coordinates are invariant under 
orthogonal transformations in IR 3, kinematic coordinates are invariant under orthogonal 
transformations in IR n, and symmetric coordinates are invariant under the symmetric 
group of transformations within some subspace of the internal coordinates. 

To achieve F-invariance, the first step is to identify integral bases B(F), i.e. 
sets of independent functions invariant under F in which any F-invariant function 
can be expressed. These coordinates are complemented by a set B(F) of functions 
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which are not F-invariant. The result is a F-"partitioning" of the 3N-dimensional 
configuration space q:in the sense that an arbitrary function f ( . . .  x ia. . . )  of the 3N 
Cartesian components of the configuration vector X can be expressed as a sum of  
products of functions of B(F) and of functions B(F) since, in general, f ( . . .  x ia. . . )  

is nonlinear in B(F) and B(F).  Typical invariants under the usual groups of 
transformations are quite well known from the theory of vector invariants [1] and 
can serve as building blocks for more specific coordinates. For instance, the n 
elementary symmetric functions in the arguments xn are invariant under the symmetric 
group FI(n) and any symmetric function in xn is expressible in the basis B(1-I(n)). 

In addition to the above symmetry considerations, the integrability of the 
multivariable SchrOdinger equation is greatly facilitated by choosing orthogonal 
coordinates which thereby eliminate cross terms in the Hamiltonian (although more 
restrictive conditions are needed in order to ensure the separability of  the solutions). 
It is then desirable 
(1) to deal with mutually orthogonal invariant subspaces yielding an optimal 

separation of the motions, and 
(2) to choose optimally orthogonal bases for the invariant subspaces themselves. 

This scheme is easily applicable to the translation invariants by employing 
generalized Jacobi vectors (GJV) qi  ( i  = 1 . . . . .  N - 1 - n )  [2, 3] instead of  the usual 
interparticle vectors x i  ( i  = 1 . . . . .  N ) .  Their Cartesian components qia  with respect 
to an inertial frame {/a: a = 1, 2, 3} are orthonormal and span the 3 N -  3 dimensional 
relative subspace which is itself orthogonal to the subspace spanned by the three 
Cartesian coordinates of the center of mass (c.m.). Both subspaces remain Euclidean 
and the 3N-dimensional configuration space is simply expressed as the direct sum 
of the mutually orthogonal relative and the c.m. subspaces. As a result, the Hamiltonian 
is exactly separable into c.m. and relative components. 

The situation is rather different for the rotational invariants. Although this 
subject has been extensively discussed in the past [4], it is worth briefly reviewing 
the principal results in terms of vector formalism. The proper way to construct 
coordinates that are invariant under physical rotations involves the specification of  
a non-intertial frame {fa: a = 1, 2, 3} (NIF) attached in some way to the entire system 
(globally defined) or to a part of the system (locally defined). In the former definition, 
all the GJV of the system are involved in the construction of the moving frame. 
Typical examples are the instantaneous principal axes of the inertia frame (IPAI) [5], 
the equivalent symmetric frame (ES) and the irreducible symmetric frame (IS) [6]. 
In the latter situation, only some specific GJV are used in the definition of  the frame. 
This model originates in the early work of  Hirschfelder and co-workers [7] and has 
been extensively generalized in the past few years by the present authors [8]. The 
resulting theory has been shown to have considerable success in the discussion of  
systems in which certain large amplitude internal modes are involved. For either 
frame, the relative coordinates yi~ of the GJV involved in the construction of the 
moving frame are the invariants for the external rotations. Unfortunately, these coordinates 
are not independent. Indeed, the specification of the NIF imposes three relationships 
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upon them and a new parameterization has to be sought (see, for instance, ref. [8]). 
Whatever this parameterization is, the transformation of the 3N Cartesian coordinates 
qia into rotational invariants B(O(3)) (internal) and noninvariant B'(O(3)) (external) 
coordinates is not linear and is best discussed locally rather than globally. Infinitesimal 
transformations are envisaged in the local tangent space and the resulting vector 
fields need to be integrated to provide the desired coordinates. At the local level, it 
is possible to construct a tangent external subspace orthogonal to the internal tangent 
space. This is achieved by defining a noninertial frame whose orientation with respect 
to the inertial frame is given by a set of three Euler angles (external variables). 
However, it can be shown that, irrespective of the choice of noninertial frame, the 
internal and external subspaces do not remain mutually orthogonal upon integration, 
leading to coupling terms between the internal and external components of the kinetic 
energy operator (see, for example, refs. [9-12]).  The degree of separability obviously 
depends on the choice of both the parameterization for the external subspace (that 
is, the choice of the noninertial frame) and of the internal subspace. 

In this paper, attention will be concentrated on various parameterizations of  
the internal subspace irrespective of the choice of external variables. Internal coordinates 
can either be derived from (physical) rotational invariants B(O(3)) depending on the 
interparticle vectors (or the orthogonal Jacobi vector counterparts) or from kinematic 
orthogonal invariants B(O(n)) depending on vectors belonging to the label space. 
However, it should be noticed that the kinematic invariants do not constitute a 
complete set of internal coordinates. Indeed, there exist kinematic invariants that are 
not internal coordinates. The usual bond distance-angle coordinates, Cartesian 
components of interparticle vectors in a noninertial frame and the BRI (basic rotational 
invariants: GJV distances and inter-GJV angles) are typical of the former family, 
whereas hyperspherical coordinates belong to the latter. It appears that, apart from 
three- and four-body systems [12-15],  no general discussion of a combination of 
members of the two species and forming a complete set of 3 N - 6  independent 
internal coordinates has been investigated in detail. Such a mixed set is particularly 
attractive in the study of systems undergoing large amplitude nuclear motion. For 
instance, in dissociation or rearrangement processes it is desirable to "switch" from 
one set of interparticle vectors before rearrangement to another set after. This switching 
procedure is actually a transformation in label space and needs to be described by 
functions belonging to B'(O,, ), the remaining internal coordinates being constructed 
from B(O(3)) n B(O(n)) in an ideally orthogonal fashion. 

This paper presents a global approach to the construction of various sets of 
mixed invariants under the orthogonal group 0(3) of physical orthogonal transformations 
and the group O(n) of label rotations, and is preparatory to a more general discussion 
involving other groups of linear transformations of relevance in molecular dynamics. 
The procedure relies on two main propositions of the theory of vector invariants. 
First, all invariants under a group F of linear transformations acting on a vector space 
are expressible in terms of a finite number of typical invariants referred to as an 
integral basis for the F-invariants. Secondly, if f is F-invariant, so is its total differential. 
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Conversely, if co is a F-invariant differential form and if it is possible to find a F- 
invariant Lie integrating factor, then ¢9 yields a family of  F-invariant integral 
curves. In principle, this is feasible at least for the orthogonal group [16-  18] when 
few variables are involved. 

In section 2, the general procedure is applied in the particularly simple and 
well-known case of translational invariants. The purpose of this exercise is to 
illustrate the theory in a situation of linear transformations as opposed to the more 
general case of curvilinear transformations. The basic concepts of arbitrariness in 
the choice of an external complementary space (c.m. coordinates are the traditional 
choice, but are not unique) and of "global" orthogonality, that is, conservation of 
the separability upon integration (through the choice of appropriate Jacobi vectors 
instead of the usual bond vectors) are easily understandable and will serve as a 
model for more complicated situations. In section 3, the infinitesimal standpoint 
needed in curvilinear manipulations is introduced by means of the concepts of  
tangent and cotangent spaces where linear transformations (of bases) can be performed 
in locally defined vector spaces. The integral bases are subsequently obtained by 
integration, provided integrability conditions are met. The example of  spherical 
coordinates serves as a simple illustration of orthogonal invariants in IR 3 depending 
on a single vector. Section 4 deals with orthogonal invariants in IR 3 and ~n depending 
on 3 and n vectors, respectively. Integral bases for physical and kinematic orthogonal 
invariants are derived in a simple fashion from the invariance of the Gram matrix 
G and the mass quadrupole M, respectively. It is also demonstrated that their 
common non-zero eigenvalues constitute a three-dimensional integral basis for physical/ 
kinematic common invariants. Section 5 deals with the local (infinitesimal) version 
of  the invariant (cotangent) subspaces and the local orthogonalization of  the internal 
vector fields. The relative vector field is integrated for a four-dimensional problem 
by using different partitions of the three-dimensional internal subspace. 

2. Translation invariance and the subspace of relative configuration 

A system of N particles moving in IR 3 is quantum mechanically described by 
the Schr~dinger equation 

(T+ V)W = EW, (2.1) 

where T is the kinetic energy operator and V is the potential. The systems considered 
here are such that V is invariant under the translations and the rotations (proper or 
not) acting in the physical space IR 3. The systems we have in mind generally 
possess additional invariance of the potential under the action of some specific 
groups of transformations acting in subspaces of the configuration space (symmetric 
groups, alternate groups . . . .  ). Consequently, the coordinates in which the potential 
is re-expressed must obviously obey the same invariance properties and the choice 
for a particular system of coordinates plays the key role in the solvability of eq. (2.1). 
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Ideally, one seeks 3N coordinates {vi}, usually derived by curvilinear 
transformations from the components {x i~} of the position vectors xl with respect 
to the inertial frame such that both the kinetic energy operator T and the function 
V, once re-expressed in the coordinates (vi), yield a solvable system of 3N one- 
dimensional Schr6dinger equations. In other words, the coordinates must be such 
that the eigenfunctions • of eq. (2.1) are factorizable in the form u? = l--ii~i(vi). 

From its invariance properties, the potential function, either in analytic form 
(when available) or in the form of numerical data, suggests the choice for the 
coordinates. For systems where V= 0, eq. (2.1) reduces to the Laplace equation 
which can be easily solved, for example, in Cartesian coordinates. On the other 
hand, whenever V can be expressed as a function of a single coordinate (central 
potentials, for instance), the equation is exactly solvable by an appropriate change 
of coordinates (radial coordinate). This actually corresponds to the invariance of V 
under the orthogonal group acting in the whole relative configuration space. 
Unfortunately, V is in general a function of more than one coordinate and the best 
that can be done is to find those systems of coordinates for which (2.1) is optimally 
separable. 

2.1. GENERAL PROCEDURE 

The general strategy aimed at achieving the above goal requires construction 
of coordinates by first taking advantage of their invariance under the action of the 
relevant groups of transformations acting in some subspace of the 3N-dimensional 
configuration space: translation and orthogonal group acting in the Euclidean physical 
space IR 3, orthogonal group acting in the Cartesian label space IR n, symmetric group 
acting in subspaces of the Riemannian internal space, etc. The invariance under a 
group F yields a partition of the underlying local vector space T~II~ of the differential 
forms defined on Ir (the so-called cotangent space [19] at P) into the internal 
subspace I(F) and an external subspace E(I) ,  arbitrarily defined as a complementary 
space to I(F) in the T~;(r. The bases spanning I(F) and E(F) are, respectively, the 
generators of the integral functions which are F-invariant and the integral functions 
which are not invariant under F. Briefly, if 7 is a covariant vector (differential form) 
of I(F), then, by integration, 1' may (if integrability conditions are met) generate a 
function (really a family of functions) invariant under any element of  F. In addition, 
if )~ ~ E(F), by integration, )~ would generate an external function. Since I(I-') is a 
finite dimensional vector space, the F-invariant functions are expressible in tenns 
of a finite number of them, the so-called integral basis B(F). With the usual scalar 
product defining the contravariant metric ~ on ~117, the orthogonality of the coordinates 
and their separability properties are encoded in the metric subtensors gint (internal) 
and gext (external). The coupling tensor gie reflects the separability of the two 
subspaces. Whenever g, ie = O, E(F) is the orthogonal complement to I(F), 

= l ( r ' )  • E(r ' ) ,  
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and the metric ~ is block-diagonal. In general, whereas E(I-') can be locally constructed 
orthogonally to I(1-') (i.e. gielP = 0), the orthogonality cannot be conserved by the 
integration Ip(F) ~ B(1-') and the lack of a "global" orthogonality between B(F) and 
B(F) is mainly responsible for the inevitable couplings between the internal and 
the external motions: o; is no longer block-diagonal. Nevertheless, there exists a 
great deal of  flexibility in the choice of a basis for I(F) and in the construction of  
E(I-'), from which optimal orthogonalizations (hence separability) can be envisaged. 
The same situation prevails in the orthogonalization within each of the subspaces 
(couplings between internal motions, for instance) and it is very unlikely that a 
completely internal (or external) orthogonal basis can be constructed. 

2.2. STRUCTURE AND METRIC OF THE CONFIGURATION SPACE 

The metric space in which the transformations of coordinates take place is 
conveniently defined as the tensor product of the Euclidean "physical" space and 
a "label" space. Let the system of N interacting particles (whose masses are ml)  be 
described by the N position vectors xi.  With a fixed origin and an arbitrary fixed 
(inertial) orthonormal frame {la; a = 1, 2, 3} centered at the origin, the 3N scalar 
products 

x ia = (xi ,  la) (i = 1, 2 . . . . .  N; a = 1, 2, 3) (2.2) 

are the components of  the position vectors with respect to the inertial frame {/,,}: 

xi = ~.~ x~l,~ . (2.3) 
a 

The ordered set of the 3N components x i" can be viewed as the 3N components 
of a vector X describing the instantaneous configuration. In this way, instead of  
considering N particles moving in IR 3, we consider one particle moving in IR 3N. The 
covariant metric for the 3N-dimensional configuration space is given by [2] 

where 

g ( x )  = diag(DN, D u ,  D N ) ,  (2.4) 

DN = diag(ml . . . . .  m s ) .  (2.5) 

This representation suggests interpretation of the configuration space as the tensor 
product of the physical space IR 3 and a label space IR N. The ordered set of  3N 
components x ia can be viewed as the 3N coordinates of the configuration vector X 
in the basis { ¢Pia}, tensor product of the label basis {ci} and the physical basis {/,,}, 

tPia = ci ® Ia,  (2.6) 

X = ~ x/adp/a. (2.7) 
/a 
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The metric tensor (covariant) is then the tensor product of the physical metric I3 
and the label metric Do (diagonal but not normed). 

The configuration vector may additionally be interpreted as the set of 3N 
components x ia of three N-dimensional label vectors ~a, 

7a = ~ xi~cl. (2.3') 
i 

This interpretation (see fig. 1) proves useful in the discussion of the mass 
quadrupole (tensor of inertia) whenever noninertial frames are defined: the scalar 
products of  the vectors Ya are related to the momenta of inertia of the molecular 
frame with respect to the inertial frame. 

Induced 
physical Physical ~1 transformation rotation 

q~ q~ 

C a b 

r 

C 2 Label ~,I~ , rotation C1 /. 

• ~, ~'[ 

¢" 

Induced label 
\ ~"~ l~c1 , t  C2~ T2 transform aa~tion, y, ~ C ~  ~,' 

a" b" 

Fig. 1. Physical and label orthogonal transformations. (a) The internal configuration is represented 
in terms of the two Jacobi vectors ql and q2 in the inertial frame {l I,/2}. (b) The same 
configuration in the noninertial frame {fbf2} obtained by the rotation R(00. (c) The internal 
configuration (a) is represented in terms of a new set of Jacobi vectors q~ and q~ obtained 
by the label rotation p(¢). (a ' )  The kinematic configuration in the label basis {e b c2} for the 
system referred to the inertial frame. (b') The same kinematic configuration for the system 
referred to the noninertial frame. (c') The same configuration in the label basis {e~, e~}. 
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Under a linear transformation represented by the 3N x 3N matrix A, the base 
vectors ~Pia transform into ejb according to the covariant  law, 

ejb = Z Aj~q~ia. (2.8) 
/a 

The metric tensor g(x )  transforms covariantly into g(y), 

g(y) = A g(x)A t. (2.9) 

In this new coordinate system, the configuration has components y jb  o b t a i n e d  

contravariant ly  from the coordinates x i~ in such a way that 

x ia = Y~ Aj~bY jb • (2.10) 
jb 

Equation (2.10) is usually viewed as the law of transformation of the dual basis' 
{x 'a} (spanning the dual configuration space 117" of the linear forms defined on ~) 
whose metric tensor is obtained by inversion of g(x):  

~ ( x )  = g - l ( x )  = (DN 1 , D~ 1 , D~I). 

To avoid any confusion, the following symbolism will be used in this paper. A list 
of symbols appears in the appendix. 

basis for C components basis for C* 

eia X ia e ia 

configuration vectors X dual vectors Z 
(linear forms) 

contravariant covariant 

X = ~ xiaeia ;Z = ~, Xia eia 
ia ia 

components 

Xia 

2.3. TRANSLATION INVARIANTS AND THE JACOBI VECTORS 

The first step to be taken in the procedures directed towards separation of 
variables is trivially achieved by considering the invariance of the relative positions 
of the particles under translations in the physical space IR 3, yielding a partitioning 
of  the 3N-dimensional configuration space I12 into a ( 3 N -  3)-dimensional relative 
space R and a three-dimensional center-of-mass space G 

~ = R @ G .  
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Although the separation of  the relative motion is a quite trivial matter, it is 
worth re-interpreting the whole procedure since it is a simplified version of  the 
theory discussed subsequently. Translation invariant coordinates are obtained from 
a l inear  p r o c e s s  as opposed to curv i l i near  t rans fo rma t ions  characterizing the other 
group invariants. Moreover, the choice for an external subspace (complementary 
space to the space generated by the translation invariants) being arbitrary, the 
coordinates of the center-of-mass are chosen since they generate a subspace orthogonal 
to the relative subspace. 

Indeed, under any translation acting in the physical space, the position vectors 
xi transform as 

xi ---) xi + a (2.11) 

and any f u n c t i o n f ( x i  - xj - ri)) is leR invariant under the group of physical translations. 
In particular, the scalar functions r~. = ( x i -  x j ,  la) provide a rational integral basis 
for translation invariants, that is, any f u n c t i o n f ( x  ia) of  the coordinates x ia invariant 
under the group of the translations in the physical space is expressible in terms of  
the r~. 

It should be noticed at this point that the relative vectors rii are not necessarily 
all independent ( r i i+ rik = rik). -R is spanned by choosing an appropriate set 
of  N - 1 independent label vectors ci - c i = ek, 

R = SPAN(e~ ® la - eka). 

The dual space ~ may be spanned by any set of  3 N -  3 linearly independent 
linear combinations of  the covariant vectors e ka. For instance, the internal space 
with respect to the physical translations could be spanned by the ( 3 N -  3)-dimensional 
basis 

e la = E l a  __ E 2 a ,  

e 2a = E la _ E 3a ,  

. . °  

e N - l ' a  = E l a  - -  E N'a  (a = 1 ,  2 ,  3). 

With this basis, the metric ~ for R* is no longer diagonal, 

= 

mi -1 + m~ 1 mi -1 ... mi -1 

mi -I mi -1 + m~ 1 ... m~ -I 

. . . . .  . ° , °  ° ° °  

mi -1 mi -1 ... mi -1 + m~ l 

The complementary subspace is spanned by a set of  three linear combinations 
of  the base vectors e ka which are linearly independent with respect to the vectors 
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e ja, for instance, the three vectors E" = Y~ie'" (a = 1, 2, 3) are linearly independent 
with respect to the set {eJa; j=  1 . . . . .  N -  1} since the determinant of the linear 
transformation 

{Fj a } ----> {e ja, E a } 

is not zero. 
It is easily demonstrated that if xc is the position vector of the center-of- 

mass, the three vectors xc ® la span the complementary subspace G and, consequently, 
G* is spanned by the corresponding dual basis {eaa}. Both subspaces R* and G* are 
mutually orthogonal and W is expressible as the product ~R~a, whereas T =  TR + To, 
yielding an exact separation of the relative and center-of-mass motions. 

With a view to diagonalizing TR, another transformation is performed by 
converting the nonorthonormal label basis { el} (metric g ) into an orthonormal counter- 
part {ni} (metric Iu) by a so-called label orthonormglizing transformation O: 

O: e ---> ~ = Oe  (2.12) 

satisfying 

0 ~ 0  t = I N . 

The configuration vector is now expressed as 

x = ~ ,  qlaOi a , ( 2 . 1 3 )  
ia 

where 

gPia = n i  ® la 

are orthonormal base vectors 

Orb) = 8ab. 

Procedure (2.12) is not unique and can be determined by considering specific 
criteria such as the symmetry of the system, etc. As a result, the set of  N - 1  
interparticle vectors {rij} is transformed into a set of so-called Jacobi vectors {qj} 
orthonormal in label space 

qi = ~ ,  q~la , ( 2 . 1 4 )  
a 

where qia= (qi, la) are 3 N - 3  orthogonal translation invariant coordinates. With 
this procedure, R has recovered its Euclidean property, hence simplifying further 
transformation. 
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3. Tangent and cotangent spaces 

The next step in the procedure is to consider the invariance properties with 
respect to orthogonal transformations in both the physical and the label spaces. In 
this case, any attempt to partition the relative subspace into a rotational invariant 
subspace and its complement involves considering curvilinear transformations of 
the 3n (n - N - 1] Cartesian coordinate qia: the elements of the matrix A in eq. (2.8) 
are no longer constants, as can easily be seen by examining the transformation of 
the inertial frame {/a} into a noninertial frame {fa}. The new components of the 
Jacobi vectors are given by 

(qi, fa ) = q,ia = ~., RbaqiO, (3.1) 
o 

where Rba are the direction cosines of fa with respect to la. The requirement for 
{f~} to be noninertial implies that the R~o are functions of the qib [6]. The same 
situation prevails with rotations in label space. Any orthogonal transformation in 
label space (represented by the n x n matrix 9) transforms the set of  Jacobi vectors 
{qi} into a new set {yj} whose components in the noninertial frame {fa} are given 
by 

yia = ~., Pjiqja (3.2) 
J 

and where once again Pji are given functions of the qJ~. 
The construct ion of  curvil inear coordinates is approached via l inear 

transformations in the cotangent space [19] at a point P. Locally, the usual co- and 
contravariant laws given by, respectively, eqs. (2.8) and (2.9) are applicable. The 
elements of the matrix A are now functions of the coordinates qia evaluated at the 
point P. 

The relative configuration basis {¢/,~} defined in the previous section (eq. 
(2.13)) is orthonormal and is used as a basis {q)iale} for the vector space Tetr 
tangent at P ~ tr. Any linear combination of the base vectors 01a It, with C**-coefficients 
evaluated at P is a vector of Tt,tr, providing by integration a vector field. 
Let {uk; k = 1 . . . . .  3n} t, be a set of 3n independent C**-functions of qia (the Jacobian 
of the transformation is non-zero). The set {u k} defines a basis {ek} for Tt,~, 

Oq~a 
ek = ~. "~--'Uk lt,Oia. (3.3) 

l a  

ek is obviously directed tangent to the curve defined by u k (u i are constant for i ~: k). 
With this interpretation [20], the elements of  the matrix A are the contravariant 
components of  ek in the Cartesian basis and (3.3) represents the linear transformation 
of the Cartesian basis {fPia} into the basis {ek}. After having temporarily re-labeled 
the indices "ia" with a single index j and by using matrix notation, the following 
holds: 
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~qJ (3.4) 
Akj = oU ~ • 

The covariant metric tensor in the coordinates u k is given by 

g(u) = A g ( q ) A  t =AA t. (3.5) 

Its elements are in general functions of the coordinates. 
The dual configuration space q~* (vector space of the linear forms defined on 

¢) is spanned by the basis {¢J} dual to {$j} which transforms according to the 
contravariant law: 

e ~ = ~ Bjk ,  j , (3.6) 
J 

where 
~u k 

B #  = ~qj (3.7) 

are the elements of the matrix B = A -1. 
In particular, if the functions u ~ are linear expressions in q J, the above relations 

reduce to the usual linear transformations since the matrix A has constant elements: 

uk = 2 BJ kqj" 
J 

The contravariant metric tensor ~ is obtained by inverting g, 

= g-1. 

(3.8) 

3.1. CONDITIONS OF INTEGRABILITY 

At P, the dual basis {~b/} spans the cotangent space Te*IE and any linear 
combination of the base vectors with C** coefficients evaluated at P defines a 1-form 
Z (covariant vector) 

z = z j ¢ ,  
J 

where the covariant components Xj are 3n C "° functions of qi=. By integration, the 
form Z will provide a function w(q 'a) which satisfies the same invariance properties. 
In principle, the integration of X can be carried out by means of finding integrating 
factors g making gZ an exact differential. If the form Z is immediately integrable, 
that is, without multiplication by any factor, its primitive w can be obtained by 
quadrature of d Z = 0. If the differential is not exact, as is usually the case, a set of 
integrating factors g can always be found to make exact the differential d(gx). In 
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this case, the partial differential coefficients of  the primitive w are proportional to 
the coefficients Z j, 

Wj = IxXj 

and the conditions of integrability 

wit = ( I x z i ) j  

imply that 

Ix(Xij- X:j,) = Zj Ix~- Z~ Ixj. (3.9) 

A direct evaluation of  Ix depends upon equations of  more advanced character than 
the ordinary first-order equations under consideration. Apart from some very few 
special cases, these differential equations cannot be solved analytically [ 17] although 
various numerical methods can be successfully used. Hopefully, for the orthogonal 
groups we are concerned with here, the problem can be somewhat simplified as 
illustrated below. 

3.2. RATIONAL INTEGRAL BASES 

It is a well-known result from the theory of  the vector invariants that all 
invariants with respect to most of  the usual groups F of linear transformations 
acting on a vector space are expressible in terms of  a finite number among them. 
For instance, a typical table of  the basic invariants of  the orthogonal group and 
depending on m vectors xi consists of  all the m 2 scalar products (xi, xj). In particular, 
the invariants depnding on the n Jacobi vectors qi are expressible in terms of  the 
n 2 scalar products (qi, qj) constituting the Gram matrix G. On the other hand, the 
invariants depending on the three label vectors ~ defined in eq. (2.3') are expressible 
in terms of the nine scalar products (~ ,  ~'b), elements of the mass quadrupole M. 
This finite number of  typical invariants constitutes a rational integral basis for any 
F-invariant function. 

3.3. INVARIANT COTANGENT SUBSPACES 

A second useful result of the theory of  vector invariants will serve as the 
keystone of the suggested procedure. It can be stated as follows: the total differential 
(covariant vector) of  a F-invariant is F-invariant. Conversely, i f  ~(qia) is a F- 
invariant differential form 

x(qa) = zj¢ (3. IO) 
J 

then a F-invariant integrating factor Ix can be found. The form IX)~ is integrable by 
quadrature and the primitives of d(IXZ) = 0 are F-invariant. This is illustrated below 
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for the orthogonal group. A more general discussion (involving the symmetric 
groups) is currently in preparation. The problem of constructing F-invariants can 
be reduced in a first step to the infinitesimal level (cotangent space) and, subsequently, 
by integration, moved back to the level of rational integral functions. 

Formally, let F be a group of linear transformations acting in the cotangent 
space T~ff~. The subspace W is invariant under F if, for any 7 ~ F, 

yW c W. (3.1 1) 

In such a case, F defines a g-dimensional bases {01 . . . . .  c g} in W in which y can 
be represented by the triangular matrix 

711 0 ~, (3.12) 
7 = k,712 722 ) 

where Tll and T22 are, respectively, g x g and ( 3 n - g ) x  matrices. 
Any linear combination X of the base vectors {c 1 . . . . .  0 g} with F-invariant 

coefficients is an invariant covariant vector with respect to F and generates by 
integration a family of functions which are F-invariant. Similarly, any linear combination 
of the dual basis which is not expressible as the linear combination of {c 1 . . . . .  c~ g} 
is not invariant under F. By integration, the linear combination will generate (if 
integrable) a function which is not F-invariant (external coordinate with respect to 
F). Any set of 3 n - g  such linearly independent combinations will span the F- 
external cotangent subspace. In this way, the configuration space has been partitioned 
into an internal F-invariant subspace I(F) and an external space E(F) with respect 
to F-invariance. Obviously, the two subspaces are disjoint only if E(1-) is the 
orthogonal complement to I(F), 

I (F )  u E(F)  = T[,C --> I (F )  n E(F)  ;e ~, 

I (F )  @ E(F)  = T~,C ~ l ( r )  n E(F)  = qb. 

The basis of {qb 1 . . . . .  ~g} can be orthogonalized by any standard procedure 
[2,3] (Gram-Schmidt ,  ES, IS . . . .  ). However, the generators obtained after the 
orthogonalization are not necessarily integrable into a F-invariant solution. Indeed, 
let {~i: i = 1 . . . . .  g} be an orthonormal basis obtained by the orthogonalization 
represented by the g x g matrix O. The generators )~i have the form 

X i = ~ O i j ~  j ( j  = 1 . . . . .  g ) .  

J 

For )~i to generate a F-invariant solution, the two following points must hold: 
(1) the coefficients Oij are F-invariant, 
(2) the integrating factor is F-invariant. 
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For the orthogonal group O(n), it is shown in the next section that the 
elements (c  k, c t) of the contravariant metric g are functions of the elements G ij of 
the Gram matrix G which constitute a rationffl basis for the orthogonal invariants. 
Any orthonormalization O transforms the basis {c~ k) into an orthonormal basis {rl k} 
according to 

O g O  t = 1 ,  

where 1 is the g-dimensional unit tensor. Hence, 

.ql, = o (c, ij) t. 
l 

By rescaling the rl k (integrating factor I.tt.(GiJ)), the forms I.tkrl k are made integrable 
and provide the set of g orthogonal O(n)-invariants. Although conceptually simple, 
the procedure requires the tremendous task of finding analytic expressions for the 
integrating factors I.tk. 

The procedure is shown in the following scheme: 

basic F-invafiants 

orthogonal F-invariants 

_derivation__, cotangent base vectors 

I 
orthonormalization 

$ 

orthonormal basis 

I 
rescaling 

$ 

integration- integrable basis 

The concept of partitioning can be easily extended to more than one group 
of linear transformations and common invariants could be envisaged. For instance, 
let F1 and 1"2 be two groups whose generators are, respectively, {c 1 . . . . .  og} and 
{~1 . . . . .  ~h}. Assuming that SPAN{o 1 . . . . .  t~ g} n {~1 . . . . .  ~h} is not empty, there 
exist common generators for which integrating factors can be found and providing 
common invariant integral curves. 

3.4. EXAMPLE: SPHERICAL COORDINATES 

Spherical coordinates are derived here in order to illustrate how the concept 
of orthogonal invariance is used in the construction of  globally orthogonal coordinates. 
This simple example is typical of orthogonal invariants in a three-dimensional space 
and depending on a single vector. The procedure followed hereafter is generalized 
in the next section for orthogonal invariants in n-dimensional space and depending 
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on an arbitrary number k < n of  vectors. For this reason, it is worthwhile to work 
out the scheme in some detail. 

Let x be a vector  of  IR 3 whose components with respect to the orthonormal 
basis {la} are x '~, 

x = x 11i + X212 + X313. 

At the point P, {la}p is a basis for the tangent space, whereas {la}p is the dual basis 
(cotangent space at P): 

gp = 13. 

The only invariant under 0 (3)  acting in IN 3 and depending on the vector x is 

r ( x  a) = (x ,  x )  = ~ (x  a )2, 
a 

which constitutes a one-dimensional integral basis for O(3)-invariants. It should be 
noticed that it is the length r 1/2 that is usually used as a coordinate. One seeks two 
coordinates (preferably orthogonal) to complement r in N. 3. 

At P, let the covariant vector erlp be defined by (after having divided by a 
factor of  2) 

er IP = Z X J  IP" 
a 

erlp is a basis for the one-dimensional internal subspace. Two external coordinates 
can be generated by any linear combination of  {l a } ]P which are linearly independent 
with respect to erlp. For instance, an easy choice would be 

El IP = --X2 ll ]e + X112 Ip , 

E2 Ie = Xl ll I e -  x313 Ip • 

The metric tensor is not diagonal: the elements (evaluated at P)  are as follows: 

g~r = r grl = 0  gr2 = X 2 _ x 2 

gll = x 2 + x 2 g12 = _XlX 2 

g22 = x 2 + x 2 " 

g can be diagonalized in several ways by any orthogonalization procedure. For 
instance, by a "non-normalizing" G r a m - S c h m i d t  procedure, one obtains 

(1) 

(2) 

E1 ]P = --X2 ll IP + Xll21p , 
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The metric tensor is now 

grr = r grl = 0 gr2 = 0 

g l l  = Xl 2 + X  2 g12 = 0 

gEE = r( x 2 + x2 ) . 

The integrability of  the two differential forms (1) and (2) is not immediate: 
(1) By choosing Ix = 1/xlx2 as an integrating factor, IxE 11P becomes an exact 

differential generating the solutions F(xl/x2): for instance, O = tan-l(xl /x2).  
(2) In addition, by choosing ~ = Ix 2 + x~] -1/2 as an integrating factor 

for (2), ~.E 2 IP generates  the solutions F(xa/[x  2 + x  2 +X2]1 /2 )  " f o r  instance,  
(I) = COS -1 ( X3/[ X ? + X22 + X 2 11/2 ). 

This achieves the separation of  the curvilinear coordinates into a rotational 
invariant (r) and two external, orthogonal coordinates (O and ~) .  However, different 
orthogonalizations can be carded out in the cotangent space by a rotation R(o0 of  
the vectors (gellp, ~.e21e) in the plane orthogonal to e'lp. The integrability of  the 
resulting 1-forms (e '~ IP, ea le)  of  course imposes conditions on the function o~(x 1, x 2, x3). 
Indeed, any function depending only on r can be used as an angle for the rotation 
providing an integrable set (e '1, e'2). 

4. Rotational invariants: integral bases 

Orthogonal invariants depending on n vectors qi of  a k-dimensional vector 
space (n < k) are expressible in terms of  the n 2 scalar products 

GiJ = (qi, qj)  = ~ .  qiaqja. (4.1) 
a 

G zj are the elements of  the so-called symmetric Gram matrix (really a contravariant 
tensor) G of  the vectors ql. The n 2 invariants G ij are not all independent: 

(1) from G zj = G ji, there are n independent diagonal orthogonal invariants 
G ii and n ( n -  1)/2 different off-diagonal elements G ij, .. 

(2) depending on the dimensions n and k, the different G 'j are not necessarily 
independent (p(G) - n, where p(G) is the rank of  G, is the number of  relationships 
among the off-diagonal elements). 

For instance, there are 3 n -  3 independent ol~hogonal invariants in IR a and 
depending on n vectors, that is, 

n "radial" invariants G ii, 

2 n -  3 independent "angular" invariants G ij (i ~:j),  

(n 2 -  5n + 6)/2 relationships between the different G ij. 

For n = 2 or 3, p(G) = 2 or 3 and all the off-diagonal elements are independent. 
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The procedure for generating curvilinear coordinates invariant under the 
orthogonal group acting in different subspaces of the configuration space is illustrated 
in this section for the three-dimensional physical space and the n-dimensional label 
space. Integral bases for both the internal and the external subspaces are obtained 
in a natural fashion from the invariance properties of the Gram matrix G of the 
Jacobi vectors and the mass quadrupole M of the noninertial frame. 

4.1. MASS QUADRUPOLE M AND GRAM MATRIX G 

The discussion is greatly simplified by using the dyadic formalism [21]. Let 
Q be the configuration dyadic defined as the tensor product of the label and physical 
dyads dn and d3, 

Q = dn ® d3. (4.2) 

Q is represented by the n x 3 matrix of the Cartesian coordinates qia, 

qll 

q21 
Q= 

° , .  

qnl 

q12 q13 ] 

q22 q23 . 

. , .  , . .  

qn2 qn3 

(4.3) 

Two fundamental tensors M and G are obtained by dyadics product: 

(1) the mass quadrupole M defined as 

M = QtQ, (4.4) 

(2) the Gram tensor G defined as 

G = e Qt. (4.5) 

Explicitly, M and G can be represented by the matrices 

Mab = ~ q~qib (3 X 3), (4.6) 
i 

Gii = Z qiaqja (n × n). (4.7) 
a 

The mass quadrupole M is related to the more conventional tensor of inertia [ by 

[=  Tr M 13- M. (4.8) 

Geometrically, M ab is the scalar product of the label vectors 'y,, and ~'b, 
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~'a = ~., qiaci, (4 .9)  
i 

where {ci} are the label base vectors defined in eq. (2.6) and G ij is the scalar 
product of  the Jacobi vectors q / and  qj. 

4.2. PROPERTIES OF M AND G 

(1) M and G are both symmetric, real and positive definite matrices. They 
are diagonalizable by real proper orthogonal matrices acting in, respectively, the 
3 × 3 physical and the n × n label space, 

RtMR = A, (4.10) 

ptG D = r ,  (4.11) 

where 

7a=~.,, for a =  1 ,2 ,3 ;  "l'a=0 

In particular, for n = 2 or 3, 

RtMR = ~ = ptG 9. 

Proof  

The eigenvalue equation for M is 

M p a = ~ , a P a ,  

A = diag(~q, ~,2, ~3), 

r = diag(71, 72 . . . . .  7n)- 

(2) M and G have the same trace, 

t = Tr M = Tr(QtQ) = Tr(QQ t) = Tr G. 

(3) M and G have the same determinant, 

d = det M = det(QtQ) = det(QQ t) = det G. 

(4) The eigenvalues of  G are as follows: 

for a > 3 .  

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

QMpa = ~,aOPa = (QQt)Qpa = ~.a(Qp~) = G(OPa). 

where p,, is the (physical space) eigenvector corresponding to the eigenvalue ~.,,. By 
premultiplying by Q, we conclude that ~,a is also an eigenvalue for G with corresponding 
(label space) eigenvector Qpa, 
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By using the trace identity and the non-negative property of  the eigenvalues ~,a and 
~'~, the theorem is proved. 

The three vectors p,, constitute a noninertial flame in which the mass quadrupole 
(hence, the tensor of  inertia) is diagonal: the instantaneous principal axes of  inertia 
flame (IPAI). With respect to this flame, the components of Pa are (Rla, R2a, R3a). 
Therefore, the components of Qpa are the Cartesian components yia of  the Jacobi 
vectors qi with respect to the principal axes flame {p~}, 

Qpa = co l (y  1~, yZa . . . . .  yna). 

After normalization and recalling the definition of the eigenvalues )~a, 

= ( y U ) 2 ,  

k 

the eigenvalue equation for G in terms of  the label base vectors ck is 

Gga = ~,a 1/2 E ykack" 
k 

The eigenvectors ga (a > 3) corresponding to the zero eigenvalues of  G are 
degenerate and they span an (n - 3) dimensional subspace of  the label space orthogonal 
to the subspace spanned by gl, g2 and g3. 

For n = 2 or 3, the problem is particularly simple since there are as many ga 
as c; so that the components of  ga with respect to the label basis ci are the elements 
of  the rotation matrix p, 

9ia = gia = (ga, Ci) 

and can be parameterized by one (for n = 2) or three (for n = 3) Euler angles Oi. 

4.3. ANALYTIC EXPRESSIONS FOR THE EIGENVALUES k a 

For n = 2, the eigenvalues are obtained easily by solving the secular equation 
I G - A l = 0 ,  

1 [ t -  (t 2 - 4d)  1/2] (4.18) ~,1 =-~1 [t + (t 2 - 4d)  1/2 ] , ~ 2  = ~ • 

For n = 3, the secular equation for G reads as 

) ,3  _ t ~ 2  + s~,  - d = 0 ,  

where s is the sum of  the three principal minors of  det G. The solutions of  this cubic 
equation are obtained from the Cardan formulae [22] 



J.P. Leroy et al., Derivation of internal coordinates 385 

~,1 = t]3 + P + Q, ~,2 = t]3 + coP + co2Q, ~,3 = t]3 + co2p + coQ, (4.19) 

where co is a cubic root of 1 (~el) and P and Q are given by 

P = [ -q /2  + (p3/27 + qZ/4)I/z]l/2, Q = [-q]2 - (p3/27 + qZ/4)llz]llz,  

where 

p = s -  t2/3, q = - 2 t 3 / 2 7 + t s / 3 - d .  

4.4. INVARIANCE PROPERTIES FOR M AND G 

Under a physical linear transformation T, the dyadic Q(q) transforms into 
Q '(q), 

T 
a ( q )  ---) Q'(q)  = Q(q)T .  (4.20) 

With a passive interpretation, T represents a change of basis in the physical space, 
whereas the Jacobi vectors remain fixed with respect to the inertial frame. With an 
active interpretation, the Jacobi vectors are transformed into a new set of physical 
vectors. 

M and G transform according to 

M ' =  TtQt(q)Q(q)T = T tMT,  

G ' =  Q(q)TTtQt(q). 

(4.21 a) 

(4.21b) 

In particular, if T is orthogonal, 

GP "~" n .  

Under a label linear transformation L, the dyadic Q(q) transforms into Q(r), 

L 
Q(q) ---) Q ( r ) =  LO(q ) ,  (4.22)  

where Q(r) is the configuration dyadic of the components of a set {ri} of linearly 
independent physical vectors representing the same configuration. 

M and G transform according to 

M(r) = Qt(r) Q (r) = Qt(q)LtL Q (q), (4.23a) 

G (r) = Q(r) Qt(r) = LQ(q) Qt(q)Lt. (4.23b) 

In particular, if L is orthogonal, the set {ri} is another set of Jacobi vectors {q~} 
and M is invariant under label orthogonal transformations 

M(q')  = M(q). 
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4.5. INTERNAL AND EXTERNAL SUBSPACES 

Since G is invariant under physical orthogonal transformations, the elements 
G ij constitute an integral basis for the internal subspace I - B(O(3)) and are referred 
to as the basic internal coordinates. The set {G 0} spans the internal subspace. 

The diagonalization of G by the label orthogonal matrix p provides n angles 
tl, i (kinematic external coordinates spanning the complement L - B(O(n))  of the 
kinematic space K -  B(O(n)). This yields a partition into 

(1) n radial coordinates Qi" 

11/2 Qi = ~a (qia)2 , 

(2) n ( n -  1)/2 angular coodinates Oij: 

Oij = COS-I I ~a qiaqja] /O~" Qj . 

The metric tensors are discussed in the next section, together with the 
orthogonalization after the infinitesimal bases have been introduced. 

Since M is invariant under label orthogonal transformations, the elements 
M ab are the basic kinematic coordinates spanning the subspaces K (M is a 3 × 3 
matrix; hence, all six matrix elements Ma°= M ba are independent). This yields a 
partition into 

(1) three radial kinematic coordinates: 

Fa = (qh~)2 , 

(2) three angular kinematic coordinates: 

From diagonalization of M by the physical orthogonal matrix R, one deduces 
the external coordinates Rab(~i) parameterized by the three external angles tx i spanning 
the external subspace E - B (0(3))  (complementary space for the internal subspace 
I) and describing the rotation of the principal axes with respect to the inertial frame. 

The partition of the configuration space is achieved in two ways, 

I u E  = l r - - ~ l n E  =f~, 

K u L = ~ --~ K n L = 9 ,  9 :  empty set. 
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Since M and G have the same eigenvalues ~,,,, the set {~,a} is invariant under 
both physical and label orthogonal transformations and constitutes an integral basis 
for the subspace K n I. 

An alternate set could be { t, d, s} since the ~'a are expressed in terms of  these 
three "geometrical" invariants: hyperradius (trace t), sum of  the principal minors 
s (surface of  the parallelipiped) and the volume v (determinant) (from eqs. (4.18) 
and (4.19). 

4.6. DIMENSIONS 

K n I generates coordinates which are internal and label invariant, 

( K n l )  u L  u E =  C =  I u E ,  

hence, 

dim C = dim(K n I) + dim L + dim E, 

3n = 3 + ( 3 n -  6) + 3; 

this agrees with 

dim(K u 1) = dim C = dim K + dim I - dim(K n I), 

3n = 6 + ( 3 n -  3 ) -  3. 

For instance, n = 3; 

9 = 6 + 6 - 3 .  

5. Rotational invariants: infinitesimal standpoint 

As discussed in the previous section, under a physical orthogonal transformation 
R, the configuration dyadic Q(q) in the representation {q} transforms according to 

Y(q) = Q(q)R, (5.1 a) 

where Y(q) is the dyadic in the same representation but referred to the noninertial 
frame. The separation of the internal and external coordinates is formally expressed 
by the relation 

qia = ~ Rak(Os)ylk(ur), (5.2a) 

k 

where the external coordinates O s are the Euler angles parameterizing the rotation 
matrix R (from inertial to noninertial frames) and u '(G u) are some set of  3 n -  3 
independent functions deduced from the elements of  the Gram matrix. 

Similarly, under the change of  representation {q} ---> {q'}, represented by the 
label orthogonal transformation L 
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Q (q')  = L Q(q) (5.1 b) 

and the separation of  the variables is formally expressed by 

qka = ~., Lik ( ~S )q,ia (1)r ) , (5.2b) 
i 

where {tI~} is a set of  Euler angles (K-external variables) parameterizing the n × n 
label orthogonal matrix L and vr (M ab) are some functions of  the six kinematic 
orthogonal invariants deduced from the mass quadrupole in a given noninertial 
frame. 

In the following, details of  the discussion are worked out for the 0(3)-  
invariants (physical space). The generalization for O(n) (label space) presents no 
problem. 

5.1. INTERNAL COORDINATES FOR PHYSICAL ROTATIONS 

Since the elements G i) o f  the symmetric Gram matrix remain invariant under 
external rotations (RGR ~ = G), they constitute a basis for the internal variables, that 
is, any internal coordinate may be expressed as a function of the variables G ij. 

The variables G ij are expressible in terms of the qia according to 

GiJ = ~ qiaqja = GJi 
a 

or, after renaming, 

radial coordinates: 

(5.3) 

Gii = r i = ~., (qi~)2, (5.4) 
a 

angular coordinates: G o - a ~ = ~ qiaqja (i ~ j ) .  (5.5) 
a 

The transformation of the Cartesian coordinates into the internal base functions 
r i and a k is curvilinear. Let dr  i and da k be the total differentials, 

dr i = ~ Okar i dq ka, da k = ~.~ Oia ak dq ia, (5.6) 
k a  i a  

where Oia stands for the partial differential with respect to qia. Locally, the covariant 
vectors (internal generators) 

. . . . .  . . . . .  

define a basis for the internal cotangent subspace. T h e  ~jb ri and Ojba i are the 
covariant components in the orthonorm al basis { ~ jb}. The components of the generators 
are readily obtained, 
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Oiar j = 2qJaSi j  , bi~a k = q ja .  (5.8)  

The scalar products (e  i, e f )  are the elements of  the contravariant internal sub- 
tensor I 

r I 0 0 0 a 2 

0 r 2 0 a I 0 

0 0 r 3 a 1 a 2 

0 a 1 a 1 r 2 + r 3 a 3 

a 2 0 a 2 a 3 r 1 + r 3 

a 3 a 3 0 a 2 a 1 

a 3 

a 3 

0 

a 2 

a 1 

r 1 -I- F 2 

(5 .9)  

which is not diagonal. 
Any internal variable v (that is, any function of  the internal integrity base 

functions) is generated by a vector e v which is a linear combination of  the generators 
e i and ¢pk, 

Ev = Z Ai£i  + Z Bk(pk' (5.10) 
i k 

where the coefficients A i and Bk are the partial derivatives of  v with respect to r i 
and a k. T h e  norm nv of  the generator e ~' is 

nv  = ( e  v , a v )1/2, (5.11) 

whereas the relative orientation of  e v with respect to the generators e i and ¢pk is 
given by 

COS( V ,  r i)  = nv 1 ( r i ) - 1 / 2 ( £  v , ~ i ) ,  ( 5 . 1 2 a )  

c o s ( v ,  a i)  = n ~ l ( r  j + r k ) - l / 2 ( £  v , tpk) .  (5 .12b)  

As can be seen from the above relations, both the norm and the relative orientations 
of  the generator e v are functions of  r i and a k (this is a general feature for curvilinear 
coordinates). 

Conversely, let eu be a linear combination of  the internal generators, 

e"  - ~., a le  i + ~ b~tp k , (5.13) 
i k 

where a i and b~ are some given functions of  r i and a k. The question is to find the 
internal variable u obtained by integrating e". This can be done by solving the 
ordinary differential equation of  the first order and of  the first degree, 
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Z a i  dr i + Z b k  da k = 0 .  (5.14) 
i k 

If this differential is immediate, that is, without multiplication by any factor, expressible 
in the form du, where u is a function of  r i and a k, then the equation is exact and 
its primitive u can be obtained by quadrature. If the differential is not exact, as is 
usually the case, an integrating f a c t o r  ~(r i, a k) can be found to make the differential 
exact 

kt(~i aidri+~"bkdak)=O'k (5.15) 

In this case, the partial differential coefficients of  the primitive u(r i, a k) are proportional 
to the coefficients a i and bk, 

ui= gai, u~= gbk, (5.16) 

Then 
O(i.tai) 32u 

= - -  (5.17) 
Or j 3r j 3a i 

02u 

~r i Or j 
(condition of  integrability) 

that is, 

{ ~ai ~aj ) 
I'1" Or j - 37 

_ b ( ~ t a i )  ( 5 . 1 8 )  

= ajP.i - ail.tj . . . (5.19) 

Geometrically, the integrating factor acts as a rescaling factor for the generator 
e" permitting the integrability of  the differential, 

( Z  aidri + ~k bk 

In short, if  the differential is not exact, e u is not generating the function u but a 
function I.t (integrating factor) may be found in order to rescale eu into the 
integrable E". 

5.2. EXTERNAL VARIABLES FOR PHYSICAL ROTATIONS 

Any set of  three independent functions O s = OS(q ia) which cannot be expressed 
as a function of  the internal integrity base functions can be chosen as external 
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variables. The concept of functional independence can be expressed mathematically 
as follows. 

Let the total differential of ®' be 

dOS = E ~iaOs dq ia 
i a 

and let the local base vectors be 

,Is =__ (~11 ° s  , 0312 Os . . . . .  On3 Os )" 

In order to be linearly independent, the functions 0 s must satisfy 

(5.20) 

(1) ~.~ a~ z ~ = 0  
$ 

(2 )  k + c S  = o 
k 

(3)  ak p k + h,'c' = 0 
k 

iff al  = a2 = a3 = 0 ,  

iff bl =b2 = . . .  =cs = 0  for s = l ,  2, 3, 

iff dl = d 2  = . . .  =hs = 0  for s = l ,  2, 3. 

In short, if Z is the curvilinear transformation (qia) _...> (r r, a t, Os), the curvilinear 
coordinates are independent if the Jacobian of the transformation is not zero, 

det Z ~ 0. 

It is easily verified that the three functions 

Os = E qirqit (r, s, t are cyclic permutations) (5.21) 
i 

obey the above three criteria and therefore constitute an integrity basis for the 
external variables. 

The components of the external generators are 

~irOS = qit (5.22) 

and the external sub-tensor E is 

A I 03 0 2"] 

0 3 A 2 01 J ' 

0 2 01 A 3 

(5.23) 

where 
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A 1 = Z [ ( q i 2 ) 2  + (qi3)2],  

i 

A 2 = Z[(qil)2 + (qi3)2], 

i 

A3 = Z [ ( q i 2 ) 2  + (q i l )2]  ( 5 . 2 4 )  

i 

are the diagonal elements of the mass quadrupole of the Jacobi vectors in the inertial 
frame. 

Any external variable is generated by a linear combination of at least one 
external generator and any internal generators: 

"c'= Z aszS + ~.~ bi¢i + ~-~ cJ cpj, (5.25) 

where s i j 

(al, a2, a3) ¢: (0, 0, 0). 

The external variable O' is obtained by integrating the differential dO'. The same 
comments concerning the exactness of the differential apply as above. Integrating 
factors are used in order to make exact dO'. 

With the internal rational basis (r i, a k) and the external basis (Os), the two 
subspaces are not orthogonal: the coupling sub-tensor C is 

q12q12 ql lq13 ql lq12 

q22q23 q21q23 q21q22 

q32q33 q3 lq33 q3 lq32 

q22q33 + q32q23 q31q23 + q21q33 q31q22 + q32q21 

q13q32 + q12q33 q31q13 + qllq33 q12q3~ + qllq32 

q13q22 + q12q23 q21q13 + q11q23 q21q12 + q22qll 

The global orthogonalization of the two subspaces cannot be achieved by any basis 
transformation, as illustrated in the following example. 

5.3. FOUR-DIMENSIONAL PROBLEM 

Let a system of three particles (ABC) be described by means of two Jacobi 
vectors (q~, q2) in the two-dimensional physical space IR 2. It may happen that two 
different configurations are better described by two different GJV representations. 
This is the case, for instance, in processes involving dissociation-rearrangements. 
In fig. 1, the configuration (a) is better described by two Jacobi vectors {qi} such 
that ql is directed along the bond BC and q2 is along the line joining A to the center- 
of-mass of BC (this representation was called a "mobile" representation by Hirschfelder 
and co-workers [7]). In configuration (b), the most appropriate choice would be to 
take qi' along the bond AB and q~ along the line joining the center-of-mass of AB 
to C. The "physical" evolution of the system from (a) to (c) induces a "switching" 
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of the set {qi} to the set {q[}. This transformation occurs in label space and is 
represented by a 2 x 2 orthogonal matrix 9 whose parameter is the kinematic variable 
¢ (fig. lc ') .  

5.4. INTEGRAL BASES 

As usual, the Gram matrix G and the mass quadrupole M, 

G ij = (qi, qj)  = qilqjl + qi2qj2, (5.26a) 

Mab = (~'a, ~'b) = qlaqlb + q2aqZb, (5.26b) 

provide integral bases for O(2)-invariants depending, respectively, on 
(1) the two vectors q~ and q2 of the physical space IR 2 referred to the inertial 

frame {/1, 12} whose origin is at the center-of-mass and 
(2) the two vectors Y1 and Y2 of the label space IR 2 referred to the label basis 

(cl, c2}. 
The separation of variables is formally achieved by choosing as external 

variables the parameters of the 2 × 2 orthogonal matrices representing, respectively, 
(1) physical space rotations R(O) transforming the inertial frame {l~,/2} into 

a given noninertial frame {fl , f2},  

R(O)M(1)Rt(O) = M ( f ) ,  

(2) label space rotations p(~)  switching the representation {qi} into {qi'}, 

p(~)G(q)pt(~) = G(q'). 

With respect to physical rotation invariance, the four variables are partitioned 
into (G 11, G 22, G 12) u ( O )  and with respect to kinematic  invariance into 
(M 11, M 22, M 12) w (~). 

5.5. INTERNAL COTANGENT SUBSPACES 

In the orthonormal basis ¢ia = Ci ~ la, the configuration vector X has components 
(q l l, q12, q21, q22). For a configuration P, the four-dimensional cotangent space T;C 
is spanned by the orthonormal dual basis (e 11, e 12, e 21, e22). 

The infini tesimal invariants for physical  and kinematic  orthogonal  
transformations are spanned by, respectively, the bases obtained from the orthogonal 
invariance of the elements of the Gram matrix G and the mass quadrupole M: 
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physical O(2)-invariant subspace I: 

19= 2(q l l ,  q12, O, 0), 

29= 2(0, 0, q21, q22), 

~3 = (q21, q22, ql l  

whose metric g(1) is 

pl ...~ 

p2 ___) 

Ot 3 

, q21),  

pl p 2 o~3 

$ $ 3, 
4G 11 0 2G 12 

4G 22 2G 12 

G 11 + G 22 

(5.27) 

(5.28) 

kinematic O(2)-invariant subspace K: 

81 = 2(q 11, 0, q21, 0), 

82 = 2(0, q12, 0, q22), 

~3 = (q12, q11, q22, q21), 

whose metric g(K) is 

81 82 K3 

3, + $ 
81 --~ 4M 11 0 2M 12 

82 __~ 4M 22 2M 12 

1~ 3 ~ M 11 + M 22 

(5.29) 

(5.30) 

The two metrics (5.28) and (5.30) can be diagonalized in various ways by 
using any orthonormalization procedure since the metrics are defined locally. 

For instance, the discussion at the end of section 2 is illustrated here for a 
Gram-Schmidt  orthogonalization. B y noticing that p l, p2 (81, 82) are already orthogonal: 

(1) normalize pl and p2 (81 and 82), 
(2) orthogonalize oQ (~c 3) with respect to pl and p2 (81, 82). 

(1) Normalization (for i = 1, 2): 

pi ~ p,i = [(qil)2 + (qi2)2]-ll2pi = aTlpi, (5.31a) 

8a ~ ~a = [(qla)2 + (q2a)2]-ll2Ea = FalEa.  (5.31b) 
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These forms are exact differentials and, by immediate integration, the integral 
functions are, respectively: 

p,i ~ [ Gii ]1/2 = Qi , (5.32) 

• ~a ~ [Maa ]1/2 = Fa " (5.33) 

(2) Orthogonalization: 

By using a straight Gram-Schmidt orthonormalization involving 91, 92 and 
ot 3, one obtains the normalized vector 

~,3 = _ N ( G I 2  pl + G12 p 2 _ 2 ~ 3 )  
~. Gll G22 ' (5.34') 

where the normalization function is 

1 ]1/2 t-UZd-1. N = ~ [GllG22 

The form ~,3 is not integrable; nonetheless, the expression between parentheses in 
(5.34) can be made integrable by using 1/G12 as an integrating factor, and the form 

0( '3=  1Gll 91+G-~2 p2-G-~2 °t3 

can be integrated directly. The solutions generated by ot "3 are 

F ( G11G22 
(G12)2 1 ' 

that is, any function of GllG22(G12) -2 satisfies (5.34'). In particular, it can easily 
be seen that, by taking 

COS -1 [GI2 (G11G22 )-1/2 ] 

as a particular solution, one recovers the usual angle 0 between the two Jacobi 
vectors in the physical space: 

qllq22 __ q12q21 ) 
0 = t a n  -1 q l l q 2 1 + ~  • (5.35) 

The internal metric transforms into 
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p,l  ..~ 

19 '2 -.-) 
C~ "3 --> 

p,1 p,2 0~,,3 

Z $ Z 

1 0 0 

1 0 
Q]-2 + Q~2 

(5.36) 

The set (Q1, Q2, 0) constitutes an orthogonal integral basis for O(2)-invariants 
depending on the two vectors ql, q2 of the physical space ~2. It should be noticed 
that the coefficients in the expansion (5.34) are O(2)-invariant, as is the integrating 
factor 1/G 12. 

Other orthogonalization procedures may be used. In any case, the coefficients 
and the integrating factors are O(2)-invariant. One might be interested, for instance, 
in three equivalent symmetric orthogonal coordinates derived from G 11, G 12 and G 22. 
This is a particularly attractive system of internal coordinates for triatomic molecules 
A3. The orthonormalization matrix O,s needed is symmetric and is given by 

Oes = g ( I )  -1/2, 

where g(1) is the metric (5.28). The elements of Oes are obviously O(2)-invariant. 
However, analytic expressions for the integrating factors are not available at the 
present time. Other orthogonalizations can be used. Among them, the three eigenvectors 
obtained from the equation 

g(1)A = )~A. 

Concerning the kinematic invariants, a similar discussion yields 

# 11 22 q12q21 1 
t a n - l | q  q - = ~ + qalq22 

Y 

for the general solutions of 1:-3. Similarly, the internal kinematic metric transforms 
into 

~,1 ~2 K~,t3 

$ $ + 

1 0 0 

1 0 

ri  -2 + r~ -2 

.=2 --4 

1( pt3 
(5.37) 

5.6. EXTERNAL SUBSPACES 

The external subspaces can be spanned arbitrarily by any linear combinations 
e which are linearly independent with respect to the internal generators (p' 1, p,2, o(,3), 
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that is, such that the determinant  of the Gram matrix of  the vectors (9 '1, p '2, 0( '3, I~) 
is not zero. For instance, one can choose the vector 

£ = (_@2,  q11, _ q22, q21). 

This form is not an exact differential. However,  it should be noticed that the vector 
fields 

E1 = (_q12, ql l ,  0, 0) ,  E 2 = (0, 0, --q22, q21) 

can be made integrable by choosing I-tl = 1/qllq 12 and g2 = 1/q21q 22 as respective 
integrating factors. By recalling that any linear combinat ion of  integrable forms is 
integrable, one obtains the integrable form 

~,3 = ~l.lEl + I£2E2 = ( _ l / q l l ,  1/q12, _ l/q21, 1/q22) (5 .38)  

integration ) 

ot = ql2 /qll  + q22 /q21. (5.39) 

Notice that E '3 is orthogonal to p,1, p,2 but not a,,3. Geometrically,  the angle 
represents the rotation of  the inertial frame axis 11 to the noninertial axis f l  directed 
along the Jacobi vector ql. 

Any linear combinat ion of  E '3 with the internal base vectors provides a 
differential form that will generate, after having been made integrable, a function 
~(qia) similar to (5.39) associated with a particular noninertial  frame {fa(~)}; for 
instance, the angle O parameterizing the orthogonal matrix R which diagonalizes 
the mass quadrupole M. This generates the instantaneous principal axes of  inertia 
as a noninertial  frame, 

R(O)MRt(®) = diag(~q, ~2)- 

The angle O is readily found as a function of  (qia) by solving the above equation: 

t a n ( 2 0 )  = - 2 

where 

M12 
M11 - M22 ' 

M12 = qllq12 +q21q22  Mll  = (q11)2 +(q21)2 ,  M22 = (q12)2 +(q22)2 .  

The external physical cotangent space is spanned by E a, 

~ot = O~llEll + ff.12E12 + Ot21E21 + Ot22E22, 

where Oi,, is the partial derivative of  tan(20)  with respect to qia, 
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1911 = - 2 ( M l l  - M22)-2 [(Mll  - Mz2)q  12 - 2M12qll ], 

1912 = - 2 ( M l l  - M22)-2[ (Ml l  - Mz2)q  II - 2M12q12], 

021 = - 2  (M11 - M22 )-2 [ (M11 - M22 )q22 _ 2 M12q 21 ], 

022 = - 2 ( M l l  - M22)-2[ (Ml l  - M22)q zl - 2M12q 2z ] 

and E a can be expressed  as 

E a = -2 (MI1  - M22)-2 K:3 + 2M12 (El -- E2 ) .  

Any linear combina t ion  e ;  o f  e a with the internal base vectors  (pl,  p2, t~3) would  
provide  ( if  integrabil i ty condi t ions are met) an acceptable  external  integral funct ion 
((qia) generated from e; such that the mass  quadrupole  t ransforms into 

R(z )MRt ( z )  = M' .  

Geometr ica l ly ,  z is the angle o f  the rotation o f  the principal axes noninert ial  f rame 
into a new noninert ial  frame whose  mass  quadrupole  with respect  to the inertial 
f rame is M ' .  Wha teve r  the l inear combina t ion  e ;  is, it is imposs ib le  to generate  an 
integral funct ion z or thogonal  to the entire internal subspace.  The  bes t  that can be 
done  is to construct  a funct ion z or thogonal  to a two-d imens iona l  subspace  o f  I, as 
demons t ra ted  in the fo l lowing  theorem and il lustrated in fig. 2. 

THEOREM 

Let  19 be an independent  variable, that is, the determinant  o f  the t ransformation 
is not  zero, 

(qllq22 _ q12q21)(1911q12 + 1921q22 _ 1912qll _ 1922q21) ~: O. (C1)  

Unless  the first term is zero (in which  case the angle be tween  the Jacobi  vec tors  
is zero),  the independence  condi t ion is 

(1911q 12 + 1921q 22 -- 1912q ll -- 022q 21 ) :¢ O. 

The  or thogonal i ty  condi t ions are 

( r  1 , t9): 1911q ll + 1912q 12 = 0 ,  ( C 2 )  

( r  2, 19); 1921q 21 + 1922q 22 = 0 ,  (C3)  

(a,  19): 1911q 21 + 1921q 11 + 1912q 22 + 1922q 12 = 0 .  ( C 4 )  
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lal 

, i  

Ib) 

X = I + ~ , / E  

"' I 

IAE = 

lntegration 

@) 
IAE # O 

SPAN{r ' , r  2} = I SPAN{e} = E 

Fig. 2. Integration of the vector fields and conservation of the orthogonality of the 
integral curves. (a) The orthogonality of the external vector field with respect to the 
internal cotangent space yields by integration a complete separability in the partition. 
The external coordinate is "purely" independent of the choice of the internal variables. 
(b) The external subspace is not the orthogonal complement to the internal space. The 
intersection of the internal and the external spaces of the integral curves is not empty. 

From (C2): 

{912 = _~,qll ,  Oll = Kq 12, 

from (C3): 

O21 = - I t  q22 022 = It q21, 

with the integrating factors K and t x satisfying the partial differential equations: 

qn~, n + q12~,12 = 2X, (C5) 

q21it21 + q221%22 = 2~.1., ( C 6 )  
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Let e x and ert be the generators of  the integrating factors ~. and Ix, 

~K = (311~. ' 312~., 021~ ' 322~.) ' F_l.t = (011Ix ' 012~1. ' 321~ ' 022Ix) " 

Conditions (C2) and (C3) establish that the generator e xis constructed orthogonal  
to pl and p2, respectively, that is, ¢x lies at the intersection of  the planes perpendicular 
to pl and p2 respectively. Condition (C5) states that the generator e x lies in the 
plane defined by e* and pl. In addition, (C6) ensures that the generator e ~t of  g is 
in the plane defined by ¢~ and 19 2. By replacing in (C4), one obtains 

Z,= -IX 

and t9 is orthogonal to the entire internal space if an integrating factor ~. can be 
found such that 

Oll =~Lq 12, 1912 = - K q  11, 6921 =~,q22,  1922 =_~ ,q21 .  

The common  integrating factor ~. must  satisfy simultaneously 

qll~,ll + q12~.12 = 2X, q21~.21 + q22~.22 = 2~., 

which is impossible according to the above result: e x cannot be in the two planes 
(e ~, p I) and (e x, p 2) unless e x - e  x, which would mean that ~. is a constant. 

The situation is analogous for the kinematic invariants. For the kinematic  
external space, one can choose 

q)3 = (_q21 ,_  q22, q l l ,  q12), 

the angle 0 parameterizing the orthogonal matrix p which diagonalizes the Gram 
matrix G in label space, 

p(0)G pt(0) = diag(Xl, ~.2), 

where 0 is given as a function of (qia) by 

tan(20)  = - 2  G12 
GI1 - G22 ' 

where 

G12 = qllq21 + q12q22, Gll = (q11)2 + (q12)2, G22 = (q21)2 + (q22)2. 

The external kinematic cotangent  space is spanned by ~0 

E0 = 011El1 + 012E12 + 021E21 + 022E22, 

where Oia is the partial derivative of 0 with respect to qia. This choice of  0 determines 
the so-called IS Jacobi vectors. As was the case for physical rotations, any linear 
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combination e ~ of e ° with the generators (e 1, e 2, I(3) would provide (if integrability 
conditions are met) a function Z corresponding to a new representation by means 
of Jacobi vectors whose Gram matrix is given by 

0(z )G0t (Z)  = G'. 

The function )~(qia) permits, therefore, a "switch" from the IS representation to 
another set of  Jacobi vectors. For example, the switching function transforming into 
the "mobile" representation can be easily derived. 

SUMMARY 

By considering the orthogonal invariants in the physical space, the cotangent 
space is partitioned into 

T~C = SPAN(p 1, p2, t~3) u SPAN(e a) 

and it has been shown in the previous section that SPAN(e a) cannot be kept orthogonal 
to SPAN(p 1, p2, ~3) during the integration process. The metric ~ assumes the form 

g(I) C ) 

C t E ' 

where C (~:0) is the 3 x 1 coupling tensor whose elements are (pl, ea), (p2, ea), 
(ix 3, e a) and E = (e a, ea). 

By considering the orthogonal invariants in the label space, the cotangent 
space is partitioned into 

T;C = SPAN(e l, e 2, 1(3) u SPAN(e°), 

where SPAN(e °) cannot be made orthogonal to SPAN(e l, e 2, 1(3) for the same reason 
as above. 

5.7. KIP INVARIANTS 

The common invariants for physical and kinematic orthogonal transformations 
are generated by the infinitesimal basis obtained from the common trace t and the 
common determinant d of G and M (eqs. (4.14), (4.15)): 

K n I space: 

et = 2(qll ,q12,q21,q22),  

ed = (q22,_ q21,_ q l2 ,q l l ) .  
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By considering the common invariants, the cotangent space is partitioned into 

T;C = SPAN(g', ga) • SPAN(ga) u SPAN(g°), 

that is, 

(1) two generators for the common invariants, 
(2) one generator for the physical external variable, 
(3) one generator for the kinematic external variables (switching functions), 

where SPAN(g a) and SPAN(g °) are orthogonal to SPAN(g t, ga) but cannot be made 
orthogonal one with respect to the other. The set (gt, gd, go) generates all physical 
internal variables, while the set (gt, ga ga) generates all kinematic variables. 

The metric tensor in these bases reads as (with the notation of section 4) 

("o ZI, 
where g(E) is given by 

(go, e0) (go, 

and where g(K/P) is not diagonal. This is overcome by considering an alternate 
basis for K n I provided by the common eigenvalues kl and L2 of G and M (eqs. 
(4)-(12)): 

2~.1 = t - [ t  2 - 4d] 1/2, t = ~1 + ~'2 ; 

2~.2 = t + [t 2 -- 4d] I/2, d = ~qk2, 

whose generators are ~1 and ~2. The infinitesimal transformation {gt, ga} ._~ {~1, ~2} 
is 

(~1- ~'2) z = (--~'2)gl --)gl~2))gl)'2 1. 

The K n l metric sub-tensor g(t, d) transforms as 

Zg(t, d)Zt= g(l 1,/2). 

A further transformation of {~1, ~2} into polar coordinates finalizes the diagonalization 
of the KIP subpace: 

gr= N(~I + ~2), gp=N(~l + ~2), 
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where N = [~2 + ~2] 1/2 e ' /N is directly integrable and generates the trace t = ~2 + ~2. 
eP/N is made exact differential by dividing by ~,1~, 2. By integration, e p generates 
the function F(~.1/~.2) whose particular solution can be taken as the polar angle 
t~ = C0S-1(~1]~,2). 

6. S u m m a r y  and conclusions 

In this work, we have described a strategy aimed at producing sets of optimally 
orthogonal internal coordinates by partitioning the internal configuration space according 
to certain group invariance properties. Integral bases for group invariants serve as 
defining local bases for the cotangent space in which orthogonalization can be 
achieved. By this procedure, an orthogonal basis for invariant 1-forms can be 
produced taking into account the symmetries inherent in the molecular Hamiltonian. 
The new set of coordinates are obtained by integrating the 1-forms. The latter step 
is not easily handled due to the difficulty of obtaining analytic integrating factors 
which are invariant as well with respect to the groups. An alternate approach, 
involving the method of the characteristics, is currently under study. 
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Note: symbols and abbreviations 

While there may be some deviation from standard rules, the following guidelines 
have been used for the symbols in this paper. 

(1) The indices i , j ,  k refer to the label space IR n and the indices a, b, c refer to 
physical space IR 3. 

(2) Upper script indices refer to contravariant components and lower script indices 
refer to covariant components. A lower script index for a vector indicates 
contravariance for the components (contravariant base vectors), and an upper 
script index for a vector refers to covariance for the components (covariant 
or dual vectors) (see, for example, ref. [23], p. 20). 

(3) Coordinates, functions, variables . . . .  are represented either by roman or greek 
letters (angular variables) with upper script indices (qia, u r, Os . . . .  ). 

(4) Vectors and vector fields are represented by bold italic roman or greek letters 
with lower script indices (that is, contravariant components). Examples are 
fa,  gPia . . . . .  Vectors defined locally (in tangent space) are represented by 

•ia IP" 
(5) Generators (vectors in dual space T~¢ with covariant components) are also 

called covariant vectors or 1-forms and are represented by lower case greek 
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(6) 

letters with upper script indices (e ia, #r . . . .  ). Once integrable, the greek 
letter may be capital (E~). 

Linear transformations are represented by roman capital letters and the matrix 
notation (two lower case indices for the element of  the rotation matrix Rab ) 
is used. This rule applies as well for tensors evaluated locally. Otherwise, the 
tensor notation is used: tensors are represented by bold roman capital letters 
A and distinction between co- and contravariant indices is made (element G ij 
of the Gram "matrix" G). 
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